Unfolding and aggregation during the thermal denaturation of streptokinase.
نویسندگان
چکیده
The thermal denaturation of streptokinase from Streptococcus equisimilis (SK) together with that of a set of fragments encompassing each of its three domains has been investigated using differential scanning calorimetry (DSC). Analysis of the effects of pH, sample concentration and heating rates on the DSC thermograms has allowed us to find conditions where thermal unfolding occurs unequivocally under equilibrium. Under these conditions, pH 7.0 and a sample concentration of less than approximately 1.5 mg x mL(-1), or pH 8.0, the heat capacity curves of intact SK can be quantitatively described by three independent two-state transitions, each of which compares well with the two-state transition observed for the corresponding isolated SK domain. The results indicate that each structural domain of SK behaves as a single cooperative unfolding unit under equilibrium conditions. At pH 7.0 and high sample concentration, or at pH 6.0 at any concentration investigated, the thermal unfolding of domain A was accompanied by the time-dependent formation of aggregates of SK. This produces a severe deformation of the DSC curves, which become concentration dependent and kinetically controlled, and thus precludes their proper analysis by standard deconvolution methods. A simple model involving time-dependent, high-order aggregation may account for the observed effects. Limited-proteolysis experiments suggest that in the aggregates the N-terminal segment 1-63 and the whole of SK domain C are at least partially structured, while domain B is highly unstructured. Unfolding of domain A, under conditions where the N-terminal segment 1-63 has a high propensity for beta sheet structure and a partially formed hydrophobic core, gives rise to rapid aggregation. It is likely that this region is able to act as a nucleus for the aggregation of the full-length protein.
منابع مشابه
Sequential Events in the Irreversible Thermal Denaturation of Human Brain-Type Creatine Kinase by Spectroscopic Methods
The non-cooperative or sequential events which occur during protein thermal denaturation are closely correlated with protein folding, stability, and physiological functions. In this research, the sequential events of human brain-type creatine kinase (hBBCK) thermal denaturation were studied by differential scanning calorimetry (DSC), CD, and intrinsic fluorescence spectroscopy. DSC experiments ...
متن کاملIrreversible Denaturation of Maltodextrin Glucosidase Studied by Differential Scanning Calorimetry, Circular Dichroism, and Turbidity Measurements
Thermal denaturation of Escherichia coli maltodextrin glucosidase was studied by differential scanning calorimetry, circular dichroism (230 nm), and UV-absorption measurements (340 nm), which were respectively used to monitor heat absorption, conformational unfolding, and the production of solution turbidity. The denaturation was irreversible, and the thermal transition recorded at scan rates o...
متن کاملThermal Analysis of Adenosine Deaminase in the Presence of Sodium N-Dodecyl Sulphate
The thermal denaturation of adenosine deaminase (ADA) has been investigated in the presence of sodium n-dodecyl sulphate (SDS) over the temperature range of (293-363K) in 2.5 mM phosphate buffer, pH 6.4 by temperature scanning spectroscopy. The interaction of SDS caused the folding of adenosine deaminanse resulting in a decrease of TH (temperature of minimum solubility), TS<...
متن کاملReversibility and hierarchy of thermal transition of hen egg-white lysozyme studied by small-angle x-ray scattering.
To clarify mechanisms of folding and unfolding of proteins, many studies of thermal denaturation of proteins have been carried out at low protein concentrations because in many cases thermal denaturation accompanies a great tendency of aggregation. As small-angle x-ray scattering (SAXS) measurements are liable to use low-concentration solutions of proteins to avoid aggregation, SAXS has been re...
متن کاملMolecular mechanisms of the irreversible thermal denaturation of guinea-pig liver transglutaminase.
When transglutaminase is heated at temperatures above 40 degrees C, it loses its activity according to a two-step mechanism [Nury, Meunier & Mouranche (1989) Eur. J. Biochem. 180, 161-166]: N----X(TD)----D However, the nature of the molecular events responsible for the irreversible denaturation is still unknown. Investigation of the effects of dithiothreitol and 5,5'-dithiobis-2-nitrobenzoate o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- European journal of biochemistry
دوره 269 16 شماره
صفحات -
تاریخ انتشار 2002